1. The sum of the measures of the $\qquad$ angles of an $n$-gon is $\qquad$ . (See page 593)
2. The measure of each interior angle of a regular $n$-gon is $\qquad$ . (See page 594)
3. The sum of the measures of the $\qquad$ angles of a polygon, one at each vertex, is
$\qquad$ . (See page 596)
4. If a quadrilateral is a $\qquad$ then:
a. its opposite $\qquad$ are congruent (See page 600)
b. its consecutive angles are $\qquad$ (See page 601)
c. its opposite angles are $\qquad$ (See page 602)
d. its diagonals $\qquad$ each other (See page 602)
5. The $\qquad$ of each of the statements in \#4 is also true. (See pages 610-612)
6. If one pair of opposite sides of a quadrilateral is both $\qquad$ and
$\qquad$ , then the quadrilateral is a $\qquad$ . (See page 613)

## Day 2 Properties of a Rhombus, Rectangle and Square

1. A $\qquad$ is a parallelogram with four congruent sides. (See page 619)
2. A $\qquad$ is a parallelogram with four right angles. (See page 619)
3. A $\qquad$ is a parallelogram with four congruent sides and four right angles. (See page 619)
4. Every square is also a $\qquad$ and a $\qquad$ . (See page 620).
5. If a parallelogram is a $\qquad$ , then:
a. its diagonals are $\qquad$ (See page 621)
b. each $\qquad$ bisects a pair of opposite angles (See page 621)
6. If a parallelogram is a $\qquad$ then its $\qquad$ are congruent. (See page 622)
7. The $\qquad$ of the statements in \#5 and \#6 are also true. (See pages 628-629)

## Day 3 Circles, Angles, Arcs and Area

1. A $\qquad$ is the sct of all points equidistant from a given point called the $\qquad$ .
You $\qquad$ a circle by its center. (See page 797)
2. A $\qquad$ is a segment that contains the $\qquad$ of a circle and has both endpoints on the $\qquad$ . A $\qquad$ is a segment that has one endpoint at the $\qquad$ and the other endpoint on the $\qquad$ . (See page 797)
3. A $\qquad$ is an angle whose $\qquad$ is the center of the circle. (See page 797)
4. An $\qquad$ is part of a circle. One type of arc, a $\qquad$ , is half of a circle. A
$\qquad$ arc is $\qquad$ than a semicircle. A $\qquad$ arc is $\qquad$ than a semicircle. (See page 797)
5. You name a minor arc by its $\qquad$ and a major arc or a semicircle by its endpoints and another $\qquad$ on the arc. (See page 797)
6. The $\qquad$ of a minor arc is equal to the measure of its corresponding
$\qquad$ . (See page 798)
7. The
$\qquad$ of a circle is $\qquad$ or $\qquad$ . The of an arc of a circle is $\qquad$ . (See pages 800 and 802 )
8. The $\qquad$ of a circle is $\qquad$ . The area of a $\qquad$ of a circle is $\qquad$ . (See pages 807 and 809)

## Day 4 Tangent Lines and Inscribed Angles

1. If a line is $\qquad$ to a circle, then the line is $\qquad$ to the at the point of $\qquad$ and vice versa. (See pages 818 and 821)
2. If two tangent segments to a circle share a common $\qquad$ outside the circle, then the two segments are $\qquad$ (See page 823)
3. An $\qquad$ is an angle whose $\qquad$ is on the circle and whose sides are $\qquad$ of the circle. (See page 839)
4. An $\qquad$ is an arc with endpoints on the sides of the inscribed angle and its other points in the $\qquad$ of the angle. (See page 839)
5. The $\qquad$ of an inscribed angle is $\qquad$ the measure of its intercepted arc. (See page 839)
